
Бұл мақалада Солтүстік Тұран шөлдерінде кездесетін Brassіcaceae тұқымдасының, түрлерінің таралуы қарастырылады. Эдафиттік нұсқау бойынша (субстраттың механикалық құрамына тәуелділігі).

The article covers the distribution of Brassicaceae family species met in the north-turan deserts as per edaphic options (in terms of mechanical composition of the substarte).

УДК 581.524.12:582.232

С.А. ДЖОКЕБАЕВА

ОПРЕДЕЛЕНИЕ ТИПОВ БИОТИЧЕСКИХ ВЗАИМООТНОШЕНИЙ В ДИКУЛЬТУРАХ МИКРОВОДОРОСЛЕЙ

(Казахский национальный университет им. аль-Фараби, г. Алматы)

В двухвидовых культурах микроводорослей, относящихся к отделам Chlorophyta, Cyanophyta и Bacillariophyta, по уровню накопления сухой массы и жизнеспособности клеток видов-партнеров определены различные типы биотических взаимоотношений

Изучение симбиозов рассматривается в настоящее время как одно из приоритетных направлений биологии. В современной трактовке этого явления распространение нашел термин «ассоциативные системы = ассоциации», под которым подразумевается взаимодействие между партнерами без наличия между ними высокоспециализированных, облигатных связей Изучение /1/.различных видов взаимодействия видов удобнее всего проводить в смешанных популяциях культивируемых микроорганизмов. Весьма интересны в этом плане фототрофные микроводоросли. Создание смешанных (ассоциированных) популяций культивируемых водорослей рассматривается как один из эффективных инструментов регуляции направленности биосинтетических процессов в фотоавтотрофных культурах на получение эффективных регуляторов роста и биомассы /2/.

В связи с этим целью данного исследования является изучение типов ассоциативных взаимоотношений в смешанных культурах микроводорослей. При оценке типов биотических отношений в ассоциированных культурах микроводорослей мы основывались на следующих определениях /3,4/: 1. Ни одна из популяций не влияет на другую [00] – нейтрализм; 2. Один вид угнетается, другой не извлекает пользы [-0] – аменсализм; 3. Один вид получает пользу, другой ничего не испытывает [+0] – комменсализм; 4. Взаимовыгодные полезные связи [++] – мутуализм; 5. Отношения, вредные для обоих видов [--] – конкуренция; 6. Один из видов получает выгоду, другой испытывает угнетение [+-] – паразитизм, хищничество.

В качестве критериев для определения того или иного типа отношений использованы данные по приросту биомассы и уровню жизнеспособности в смешанных культурах по сравнению с монокультурами.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Культуры микроводорослей выделены из полевых образцов, отобранных в различных регионах Алматинской и других областей во время экспедиционных выездов. Культуры

микроводорослей выращивали на среде Фитцджеральда /5/. Альгологически чистые и двухвидовые культуры микроводорослей культивировали в конических колбах Эрленмейера объемом 100 и 500 мл при температуре 26-28°C в люминостате с круглосуточным освещением. Продолжительность культивирования 30 дней. Для определения коэффициента размножения (КР), который использовался нами как критерий роста культур, пользовались следующей формулой /5/:

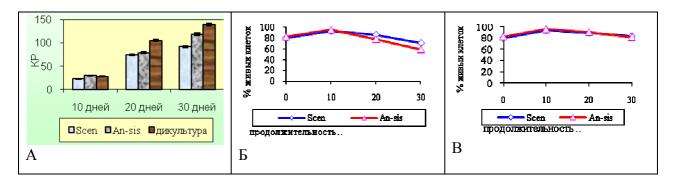
$$KP = \frac{M_2}{M1},$$

где M_1 – сухой вес посевного материала (начальная концентрация клеток), M_2 – сухой вес биомассы в конце опыта (конечная концентрация клеток).

В предварительных опытах проведен скрининг всевозможных двувидовых сочетаний микроводорослей с использованием методики H.C.Егорова /6/ и отобраны 20 вариантов. Для выращивания дикультур в жидких средах отбирали биомассы каждого из видов микроводорослей на стадии экспоненциального роста. Готовили посевной материал из биомасс обоих видов в соотношении 1:1 по сырой массе клеток, диспергируя их в небольшом количестве дистиллированной воды (pH=7.0). При посеве в каждую колбу вносили одинаковый объем инокулята каждой монокультуры, который составлял ½ объема, обычно используемого для посева монокультуры.

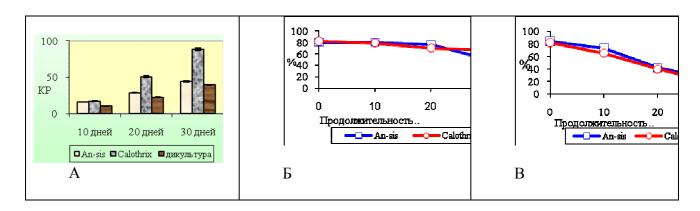
Для определения жизнеспособности клеток в моно- и смешанных культурах микроводорослей использовали цитохимическую реакцию с трифенилтетразолия хлоридом (ТТХ) /5/. Жизнеспособность клеток микроводорослей является хорошим диагностическим показателем состояния культур. ТТХ, обладая потенциалом 220 mV, перехватывает водород восстановленных пиридиннуклеотидов и переходит в водонерастворимое соединение — формазан рубинового цвета. Для проведения реакции к определенному объему исследуемой суспензии водорослей приливали такое количество 0,2% раствора ТТХ, чтобы конечная концентрация составляла 0,075%. Водоросли помещали на рассеянный свет на 16-20 часов. Количество клеток с формазаном и без него подсчитывали под микроскопом.

Статистическую обработку полученных результатов проводили стандартными методами /7/.


РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ОБСУЖДЕНИЕ

По результатам экспресс-скрининга различных сочетаний микроводорослей в двухвидовых культурах отобрано 10 видов, культивировавшихся в 20 попарных сочетаниях на жидкой среде Фитцджеральда. В семи из них обнаружены количественно определяемые процессы межвидового взаимовлияния. Так, в соответствии с рисунком 1, в смешанной культуре Scenedesmus acuminata и Anabaenopsis sp., происходило более интенсивное накопление биомассы, чем в монокультурах данных видов. Совместное культивирование этих видов вызывает более интенсивный прирост биомассы, чем в их монокультурах.

В данной дикультуре наблюдается взаимная стимуляция роста обеих культур, характерная для мутуалистических взаимовлияний (++).


Такие же взаимоотношения складываются между другим видом сценедесмуса S.qudricauda и Cylindrospermum sp.

На рисунке 2 представлены данные по нарастанию биомассы в моно- и смешанных культурах *Anabaenopsis sp.* и *Calothrix pariethina*, где происходит торможение роста обоих видов. Такой тип взаимоотношений можно отнести к конкуренции (--).

А – динамика изменения коэффициента размножения; Б- изменение уровня жизнеспособных клеток в монокультуре; В – то же в смешанных культурах

Рисунок 1. Характеристика ростовых процессов в смешанной культуре Scenedesmus acuminata + Anabaenopsis sp. по сравнению с монокультурами

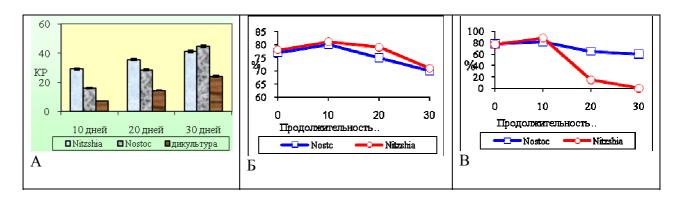
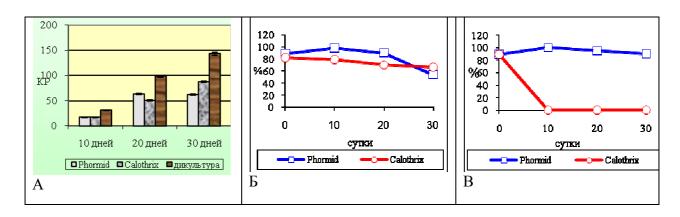

А – динамика изменения коэффициента размножения; Б- изменение уровня жизнеспособных клеток в монокультуре; В – то же в смешанных культурах

Рисунок 2. Характеристика ростовых процессов Anabaenopsis sp и Calothrix pariethina при культивировании в виде монокультур и в совместной культуре

Представленные на рисунке 3 данные по определению динамики роста моно- и смешанных культур Nitzshia и Stratonostoc attenuate показывают, что в процессе культивирования наблюдается угнетение роста ницшии, что характерно для антагонистических взаимовлияний (+-).


В следующем сочетании видов синезеленых водорослей - *Phormidium и Calothrix* - процессы подавления сопутствующего вида разворачивались наиболее быстро: к 10-му дню культивирования наблюдалась полная гибель калотрикса (рисунок 4). Такие взаимоотношения являются ярким проявлением антагонизма (+-).

В следующем сочетании видов синезеленых водорослей - *Phormidium и Calothrix* - процессы подавления сопутствующего вида разворачивались наиболее быстро: к 10-му дню культивирования наблюдалась полная гибель калотрикса (рисунок 4). Такие взаимоотношения являются ярким проявлением антагонизма (+-).

A – динамика изменения коэффициента размножения; B- изменение уровня жизнеспособных клеток в монокультуре; B – то же в смешанных культурах

Рисунок 3. Характеристика ростовых процессов Nitzshia и Stratonostoc attenuate при культивировании в виде монокультур и в совместной культуре

А – динамика изменения коэффициента размножения; Б- изменение уровня жизнеспособных клеток в монокультуре; В – то же в смешанных культурах

Рисунок 4. Динамика увеличения сухой массы Phormidium uncinatum и Calothrix pariethina

Таким образом, проведение описанных выше опытов показало, что из 20 изученных сочетаний видов только в двух наблюдалась взаимная стимуляция: Scenedesmus quadricauda + Anabaenopsis sp. и S.quadricauda + Cylindrospermum sp. Однако подтвердить это можно только определив наличие стимуляторов роста в культуральной жидкости с помощью биотестов. В остальных смесях наблюдались процессы антагонизма видов, что подразумевает выделение ингибиторов роста. В смешанных культурах Nitzshia sp.+ Stratonostoc linckia, а также в не отраженных в настоящей статье: Nitzshia sp. + Microcystis aeruginosa и Stratonostoc linckia + Calothrix pariethina полное подавление сопутствующего вида завершалось к 20-му дню культивирования. Наиболее медленно процессы подавления происходили в смеси Anabaena flos-aquae + C.pariethina, так как к 30-му дню культивирования около 20% клеток калотрикса оставались жизнеспособными.

Полученные данные будут проверены в последующих опытах по проведению скрининга ростовых регуляторов и использованы для дальнейшей работы по выделению, очистке и идентификации биологически активных соединений ассоциативных систем.

ЛИТЕРАТУРА

- 1. Бухарин, Лобакова, Немцева и др., Ассоциативный симбиоз. Екатеринбург, 2007- 264 с.
- 2. Dakshiny Inderjit, Dakshini K.M.M. Algal allelopathy //Bot.rev.-1994.-60,N2.-c.182-196.
- 3. Шилов И. А. Экология. М. Высшая школа, 1997.
- 4. Одум Ю. Экология. М.: Мир, 1986. Т. 1. 328 с. Т. 2. 376 с.
- 5. Методы физиолого-биохимического исследования водорослей в гидробиологической практике Киев: «Наукова думка», 1975.-245 с.
- 6. Егоров Н.С. Основы учения об антибиотиках. М.: МГУ Наука, 2004. 525 с.
- 7. Урбах В.Ю. Статистический анализ в биологических и медицинских исследованиях.-М.:Медицина, 1975, 295 с.

Chlorophyta, Cyanophyta және Bacillariophyta бөлімдеріне жататын микробалдырлардың қос дақылдарында құрғақ массаны жинақтау және серіктес-түрлер клеткалардың өміршеңдігі бойынша биотикалық ара - қатынастардың типтері анықталынды.

It was defined the level of dry weight and viability accumulation of partners-species cells and different types of biotic relationships from two-specific cultures of the microalgae from Chlorophyta, Cyanophyta and Bacillariophyta.

УДК 581.9

З.А. ИНЕЛОВА

ОХРАНА РЕДКИХ И ИСЧЕЗАЮЩИХ ВИДОВ ДОЛИНЫ СРЕДНЕГО И НИЖНЕГО ТЕЧЕНИЯ Р. ИЛЕ

(Казахский национальный университет имени аль-Фараби)

В статье приводится анализ редких и исчезающих видов флоры долины среднего и нижнего течения р.Иле.

В настоящее время в Казахстане, особенно остро стоит проблема охраны и восстановления биоразнообразия. Одной из главных задач для решения данной проблемы является изучение и сохранение ботанических объектов /1/.

Синантропизация приводит к унификации, обединению состава, не желательному замещению автохтонных видов аллохтонными, упрощению структуры, нарушению исторически сложившихся взаимосвязей компонентов растительного сообщества, что снижает их стабильность функционирование и продуктивность. Особенно антропогенное воздействие влияет на численность популяций и сохранность редких и в частности эндемичных видов /2/.

K настоящему времени под прямым или косвенным воздействием человека многие виды растений природной флоры республики стали редкими или исчезающими в тех или иных регионах 2.

Территория исследования на протяжении долгого времени находится под прессом антропогенного фактора: это строительство Капшагайского водохранилища на р. Иле, беспорядочный выпас скота, а также стихийный (безграммотный) туризм и это все сказалось на флоре долины среднего и нижнего течения р. Иле.