М.Ю. СЕННИКОВА

КОЛИЧЕСТВО ВЫБРОСОВ МАРГАНЕЦСОДЕРЖАЩЕЙ ПЫЛИ ПРИ ДОБЫЧЕ, ПЕРЕРАБОТКЕ И ТРАНСПОРТИРОВКЕ РУДЫ НА МЕСТОРОЖДЕНИИ «ВОСТОЧНЫЙ КАМЫС»

(Казахский национальный университет имени аль-Фараби)

В работе представлена характеристика влияния марганецсодержащей пыли на компоненты окружающей среды при добыче, переработке и транспортировке руды.

В Карагандинской области ввиду наращивания в последнее время промышленного потенциала, сложилась крайне напряженная экологическая ситуация. Особого внимания заслуживает открытый способ добычи полезных ископаемых, где все технологические процессы сопровождаются выделением многокомпонентной пыли /1/. Необходимо отметить, что в настоящее время в Республике Казахстан добываются и перерабатываются преимущественно окисленные марганцевые руды, развитые в верхних частях месторождений и не требующие больших затрат на обогащение и разработку, доля которых составляет около 4 % от общих разведанных запасов. Известно, что запасы эксплуатируемых в настоящее время богатых окисленных руд ограничены, а применяемый метод их обогащения (ситовый рассев) малоэффективен и связан со значительными потерями марганца и пылевыделению от руды /2/. Поэтому одним из вредных производственных факторов при открытой добыче руды является пыль, основными источниками которой являются карьерные дороги и отвалы взорванных вскрытых пород руды. На обогатительных фабриках выбросы пыли возникают при дроблении полезного ископаемого и с хвостохранилищ. Высокие уровни загрязнения атмосферного воздуха рудничной пылью способствуют их кумуляции в почве, снеговом покрове на больших расстояниях /3/.

Поскольку почти весь марганец, выбрасываемый в атмосферу, связан с мелкими частицами, он может переноситься на значительные расстояния. Около 80 % поступающего в атмосферу марганца связано с частицами, имеющими среднемассовый эквивалентный диаметр менее 5 мкм, а около 50 % - с частицами, диаметр которых менее 2 мкм /4/. Марганец антропогенного происхождения, обусловливающий химическое загрязнение подземных вод, попадает в них из промышленных стоков, при растворении атмосферными остатками сырья, твердых отходов. Безусловно, один из фильтруемых водопотоков — это атмосферные осадки, загрязненность которых значительна в промышленных районах /5/.

В пресных водах марганец может находиться как в растворенном, так и в суспендированном состоянии. Величины уровней марганца в почве определяются главным образом типом присутствующих в ней соединений и такими показателями почвы, как рН и окислительно-восстановительный потенциал /5/.

Месторождение «Восточный Камыс» расположено на площади животноводческого совхоза Женис Жана - Аркинского района Карагандинской области. Мощность карьера «Восточный Камыс» по добыче марганцевой руды - 400 тыс.тонн в год. Размеры рудного поля: длина 3000 м, ширина 1000 м, площадь 3 км² /6/. Промышленные зоны условно подразделяются на:

- 1) Промышленная площадка № 1 марганцевый рудник «Восточный Камыс».
- 2) Промышленная площадка № 2 пункт перегрузки руды из автотранспорта в железнодорожные вагоны расположен на железнодорожной станции Кызыл-Жар.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Для расчета загрязнения окружающей среды марганецсодержащей пылью первоочередной задачей являлось – определение состояния атмосферного воздуха в районе промышленных объектов в соответствии с:

- 1) климатическими особенностями территории, определяющими условия рассеивания загрязняющих компонентов;
- 2) ингредиентным составом, объемами выбросов загрязняющих веществ и характеристиками источников выбросов (высотой, диаметром, скоростью газовоздушных потоков) /6/.

Исходя из этих факторов, были проанализированы климатические особенности района расположения месторождения по данным метеостанций Кызыл-Жар и Жана-Арка и дана характеристика предприятия как источника образования и выброса загрязняющих веществ в атмосферу.

С целью количественного анализа выбросов загрязняющих веществ от рудника «Восточный Камыс» были выполнены следующие расчеты: определено количество выделяющихся твердых веществ при работе буровых станков, при вскрыше карьера, при добыче, при работе дробильно-сортировочной установки, обогатительного комплекса, а также при транспортных работах. Следующие виды работ сопровождаются выбросами загрязняющих веществ:

1) Буровые работы: количество пыли неорганической, выделяющейся при работе буровых станков, определяются по формулам /7/:

$$M_{z} = 0.785 \times d^{2} \times V \times p \times B \times K_{7} \times (1-n) \times 10^{-3} / 3.6, \frac{2}{ce\kappa}, \qquad (1)$$

$$M_{m} = 0.785 \times d^{2} \times V \times p \times T \times B \times K_{7} \times (1-n), \frac{m}{coo}, \qquad (2)$$

где

d – диаметр буровых скважин, м;

V – скорость бурения, м/ч;

p — плотность породы или угля, т/м³;

T — годовое число рабочих часов, ч/год;

n - эффективность средств пылеулавливания, доли единицы;

B – содержание пылевой фракции в буровой мелочи, доли единицы;

 K_7 – доля пыли (от всей массы пылевой фракции), переходящая в аэрозоль.

2) Вскрышные работы:

$$M_{z} = K_{o} \times K_{1} \times K_{4} \times K_{5} \times g_{yo} \times M_{j} \times (1-n), \frac{2}{ce\kappa} , \qquad (3)$$

$$M_m = K_0 \times K_1 \times K_4 \times K_5 \times g_{yo} \times M_n \times (1-n) \times 0,000001, \frac{m}{200}$$
, (4)

гле

 $K_{\scriptscriptstyle 0}$ - коэффициент, учитывающий влажность материала;

 K_1 - коэффициент, учитывающий скорость ветра;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности склада от внешних воздействий;

 K_5 - коэффициент, учитывающий высоту пересыпки материала (экскаватором – 0,7; бульдозером – 0,7);

 $g_{y\delta}$ - удельное выделение пыли с тонны перемещаемого материала, г/м³;

 M_n - количество перемещаемого материал, м³/год;

 M_{i} - максимальное количество перемещаемого материала, м 3 /ч;

n - эффективность средств пылеулавливания, доли единицы (принимается равной 0).

3) Работа дробильно-сортировочной установки и обогатительного комплекса. Разгрузка, пересыпка и сдувание руды различных фракций рассчитывается по формулам (3) и (4).

Дробление и грохочение руды определяется /7/:

$$M_{z} = V \times C \times K_{0} \times (1 - n), \frac{2}{ce\kappa} , \qquad (5)$$

$$M_m = 3.6 \times 10^{-3} \times K_0 \times T \times V \times C \times (1-n), \frac{m}{200} , \qquad (6)$$

где

 $K_{\scriptscriptstyle 0}$ - коэффициент, учитывающий влажность материала;

T - время работы технологического оборудования;

V - объем отходящих газов;

C - концентрация пыли в отходящих газах;

n - эффективность применения средств пылеподавления.

Рассчитанные значения выбросов загрязняющих веществ позволяют определить категорию опасности предприятия.

Расчёт категории опасности производится по формуле /8/:

$$KO\Pi = \left(\frac{M_i}{\Pi \square K_i}\right)^{a_i},\tag{7}$$

где

 M_{i} - масса выброса і-го вещества;

 a_i - безразмерная константа, позволяющая соотнести степень вредности і-го вещества с вредностью сернистого газа;

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ОБСУЖДЕНИЕ

По имеющимся данным были произведены расчеты и полученные данные представлены в таблице 1.

Таблица 1 Выбросы загрязняющих веществ при добыче и переработке марганцевой руды месторождения «Восточный Камыс»

Вид Работы	Наименование загрязняющего Вещества	Выбросы г/сек	Выбросы т/год
Буровые работы	Пыль марганецсодержащая неорганическая 70-20 %	0,1075	2,8649
Взрывные работы	Пыль марганецсодержащая неорганическая 70-20 %		1,08
	Диоксид азота		0,5625
	Оксид углерода		4,05
Вскрышные работы	Пыль марганецсодержащая неорганическая 70-20 %	0,0897	2,8343
Добычные работы	Пыль марганецсодержащая неорганическая 70-20 %	0,0897	0,493
Дробильно-			
Сортировочные			
Работы	Пыль марганецсодержащая неорганическая 70-20 %	1,2924	40,7611
Обогатительный			
Комплекс	Пыль марганецсодержащая неорганическая 70-20 %	8,04	147,2659
Транспортные			
Работы 1	Пыль марганецсодержащая неорганическая 70-20 %	0,4273	12,5524
Транспортные Работы 2	Пыль марганецсодержащая неорганическая 70-20 %	0,1007	2,9582

В ходе выполнения анализа полученных данных были сделаны следующие выводы:

- 1) При производстве вскрышных работ и при добыче руды существенное загрязнение атмосферы происходит в результате работы экскаваторов (по сравнению с работой бульдозеров).
- 2) При производстве взрывных работ происходит выброс марганецсодержащей пыли неорганической 70-20 % в размере 1,08 т/год, а также выброс диоксида азота (0,56 т/год), и оксида углерода (4,05 т/год).
- 3) Один из видов работ, оказывающий наибольший вклад в выделениях марганецсодержащей пыли неорганической 70-20 %, это работа дробильно-сортировочной установки и составляет 40,7611 т/год (из них 55,65 % это вклад дробления руды в щековой дробилке и 37,15 % грохочение руды в инерционном грохоте).
- 4) Наибольшее загрязнение выбросами марганцевой пыли оказывает работа обогатительного комплекса (147,26 т/год), а наименьшее добычные работы (0,493 т/год).
- 5) Суммарный выброс марганецсодержащей пыли неорганической 70-20 % от всех видов работ, выполняемых на руднике «Восточный Камыс» составляет 210,81 т/год.
- 6) Вскрышные породы с относительно высоким содержанием марганца, а также с наличием других химических элементов обладают миграционными свойствами, усиливающимися и ослабляющимися в зависимости от сопутствующих условий.
- 7) Потенциальным источником эколого-геохимического загрязнения подземных и поверхностных вод территории являются подземные воды рудоносной толщи, прудиспаритель, дренажная канава и шламоотстойник, где скапливаются и испаряются дренажные воды.

Расчет категории опасности представлен в таблице 2.

Таблица 2

Расчет категории опасности месторождения «Восточный Камыс»

№	Наименование загрязняющих веществ	Класс опасности	a_{i}	ПДКс.с.	Выбросы веществ, т/год	Величина КОП
1	Пыль марганецсодержащая неорганическая: 70-20 %	3	1,0	0,1	210,8101	2108,101
2	Углерода оксид	4	0,9	3	4,05	1,04
3	Азота диоксид	2	1,3	0,04	0,5625	71,375

Промышленная площадка № 1 рудника «Восточный Камыс» РУ «Казмарганец» филиал АО «ТНК «Казхром» относится к 3 категории опасности, $10^3 < \text{KO\Pi} < 10^4$.

ЛИТЕРАТУРА

- 1. Кацнельсон Б.А., Кошелева А.А., Кузьмин С.В., Привалова Л.И. Роль эколого-эпидемиологических исследований атмосферных загрязнений в оценке риска острой смертности // Вестник РАМН: 2002. №9 С. 23 28.
- 2. Байсанов А.С. Разработка комплексной технологии переработки железомарганцевых руд // Индустрия Казахстана: − 2006. №12 С. 30 32.
- 3. Рахшиев Е.К. Гигиеническая оценка воздействия пылевого фактора на организм в условиях открытой добычи руды // Материалы международной научной конференции: Современные проблемы профессиональных заболеваний бронхолегочной системы. Караганда, 2001. С. 22 27
- 4. Воробьев А.И., Волкотруб Л.А., Пазерова В.П. Гигиеническая оценка влияния атмосферных загрязнений на здоровье населения промышленного города // Гигиена и санитария: 1990. №1 С. 23-27.
- 5. Гигиенические критерии состояния окружающей среды. Марганец. Женева: Всемирная организация здравоохранения, 1985. С. 10 47.
- 6. Месторождения марганца Казахстана: Справочник. Алматы, 1999. С. 12 17.
- 7. Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы, 1996. С. 200 215.
- 8. Сальников В.Г. Загрязнение и охрана атмосферы. Алматы: КазНУ имени аль-Фараби, 2000. С. 32 34.

Осы еңбекте кенді шығару, өндіру және тасымалдау кезіндегі құрамында марганец бар шаңның қоршаған орта компоненттеріне әсерінің сипаттамасы көрсетілген.

In this paper characteristics influence of Mn dust on environment's contaminants from mining, treatment and convey is presented.